688 research outputs found

    CO2 Ocean Bistability on Terrestrial Exoplanets

    Get PDF
    Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub‐systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear‐sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean‐bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G‐ and F‐type stars (but not M‐type stars) may display bistability between an Earth‐like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO(2) condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO(2). At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO(2)‐condensing and hot, non‐condensing climates. CO(2) bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide‐condensing climates follow an opposite trend in pCO(2) versus instellation compared to the weathering‐stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories

    Cluster Dynamics of Planetary Waves

    Full text link
    The dynamics of nonlinear atmospheric planetary waves is determined by a small number of independent wave clusters consisting of a few connected resonant triads. We classified the different types of connections between neighboring triads that determine the general dynamics of a cluster. Each connection type corresponds to substantially different scenarios of energy flux among the modes. The general approach can be applied directly to various mesoscopic systems with 3-mode interactions, encountered in hydrodynamics, astronomy, plasma physics, chemistry, medicine, etc.Comment: 6 pages, 3 figs, EPL, publishe

    Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres

    Full text link
    Exoplanets with lower equilibrium temperatures than Earth and primordial hydrogen atmospheres that evaporate after formation should pass through transient periods where oceans can form on their surfaces, as liquid water can form below a few thousand bar pressure and H2-H2 collision-induced absorption provides significant greenhouse warming. The duration of the transient period depends on the planet size, starting H2 inventory and star type, with the longest periods typically occurring for planets around M-class stars. As pre-biotic compounds readily form in the reducing chemistry of hydrogen-rich atmospheres, conditions on these planets could be favourable to the emergence of life. The ultimate fate of any emergent organisms under such conditions would depend on their ability to adapt to (or modify) their gradually cooling environment.Comment: 19 pages, 5 figures, accepted for publication in Icaru

    Increased insolation threshold for runaway greenhouse processes on Earth like planets

    Full text link
    Because the solar luminosity increases over geological timescales, Earth climate is expected to warm, increasing water evaporation which, in turn, enhances the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can "runaway" until all the oceans are evaporated. Through increases in stratospheric humidity, warming may also cause oceans to escape to space before the runaway greenhouse occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated with unidimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of Earth's climate. Here we use a 3D global climate model to show that the threshold for the runaway greenhouse is about 375 W/m2^2, significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback on the long term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to defer the runaway greenhouse limit to higher insolation than inferred from 1D models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains cold and dry enough to hamper atmospheric water escape, even at large fluxes. This has strong implications for Venus early water history and extends the size of the habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013. Accepted version before journal editing and with Supplementary Informatio

    Cumulative carbon as a policy framework for achieving climate stabilization

    Get PDF
    The primary objective of The United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level, and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternate framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO2 concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO2 emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions due to the much longer atmospheric residence time of CO2 relative to other major climate forcing agents
    • 

    corecore